\( % Math symbol commands \newcommand{\intd}{\,\mathrm{d}} % Symbol 'd' used in integration, such as 'dx' \newcommand{\diff}{\mathrm{d}} % Symbol 'd' used in differentiation \newcommand{\Diff}{\mathrm{D}} % Symbol 'D' used in differentiation \newcommand{\pdiff}{\partial} % Partial derivative \newcommand{\DD}[2]{\frac{\diff}{\diff #2}\left( #1 \right)} \newcommand{\Dd}[2]{\frac{\diff #1}{\diff #2}} \newcommand{\PD}[2]{\frac{\pdiff}{\pdiff #2}\left( #1 \right)} \newcommand{\Pd}[2]{\frac{\pdiff #1}{\pdiff #2}} \newcommand{\rme}{\mathrm{e}} % Exponential e \newcommand{\rmi}{\mathrm{i}} % Imaginary unit i \newcommand{\rmj}{\mathrm{j}} % Imaginary unit j \newcommand{\vect}[1]{\boldsymbol{#1}} % Vector typeset in bold and italic \newcommand{\normvect}{\vect{n}} % Normal vector: n \newcommand{\dform}[1]{\overset{\rightharpoonup}{\boldsymbol{#1}}} % Vector for differential form \newcommand{\cochain}[1]{\overset{\rightharpoonup}{#1}} % Vector for cochain \newcommand{\Abs}[1]{\big\lvert#1\big\rvert} % Absolute value (single big vertical bar) \newcommand{\abs}[1]{\lvert#1\rvert} % Absolute value (single vertical bar) \newcommand{\Norm}[1]{\big\lVert#1\big\rVert} % Norm (double big vertical bar) \newcommand{\norm}[1]{\lVert#1\rVert} % Norm (double vertical bar) \newcommand{\ouset}[3]{\overset{#3}{\underset{#2}{#1}}} % over and under set % Super/subscript for column index of a matrix, which is used in tensor analysis. \newcommand{\cscript}[1]{\;\; #1} \newcommand{\suchthat}{\textit{S.T.\;}} % S.T., such that % Star symbol used as prefix in front of a paragraph with no indent \newcommand{\prefstar}{\noindent$\ast$ } % Big vertical line restricting the function. % Example: $u(x)\restrict_{\Omega_0}$ \newcommand{\restrict}{\big\vert} % Math operators which are typeset in Roman font \DeclareMathOperator{\sgn}{sgn} % Sign function \DeclareMathOperator{\erf}{erf} % Error function \DeclareMathOperator{\Bd}{Bd} % Boundary of a set or domain, used in topology \DeclareMathOperator{\Int}{Int} % Interior of a set or domain, used in topology \DeclareMathOperator{\rank}{rank} % Rank of a matrix \DeclareMathOperator{\divergence}{div} % Divergence \DeclareMathOperator{\curl}{curl} % Curl \DeclareMathOperator{\grad}{grad} % Gradient \DeclareMathOperator{\diag}{diag} % Diagonal \DeclareMathOperator{\tr}{tr} % Trace \DeclareMathOperator{\lhs}{LHS} % Left hand side \DeclareMathOperator{\rhs}{RHS} % Right hand side \DeclareMathOperator{\argmax}{argmax} \DeclareMathOperator{\argmin}{argmin} \DeclareMathOperator{\esssup}{ess\,sup} \DeclareMathOperator{\essinf}{ess\,inf} \DeclareMathOperator{\kernel}{ker} % The kernel set of a map \DeclareMathOperator{\image}{Im} % The image set of a map \DeclareMathOperator{\diam}{diam} % Diameter of a domain or a set \DeclareMathOperator{\dist}{dist} % Distance between two sets \DeclareMathOperator{\const}{const} \DeclareMathOperator{\adj}{adj} \DeclareMathOperator{\spann}{span} \DeclareMathOperator{\real}{Re} \DeclareMathOperator{\imag}{Imag} \)

Mathematical Theory in HierBEM

Jihuan Tian

2025-09-18

I  Functional analysis
1 Adjoint operators in functional analysis
 1.1 Basic definitions of adjoint operators
 1.2 Relationship between adjoint and Hilbert-adjoint in Hilbert spaces
 1.3 Self-adjointness
 1.4 Adjoint operators in discrete case
 1.5 Clarification
II  Partial Differential Equations
2 Lagrange multiplier method and its application in PDEs
 2.1 Lagrange multiplier method understood from differential geometry
 2.2 Application of Lagrange multiplier method in PDEs
 2.3 Summary
III  Differential geometry
IV  Linear algebra
3 Iterative solvers
 3.1 Notion of projection
 3.2 Notion of functional minimization
V  Preconditioning techniques
Bibliography